

NCEO/CEOI-ST Joint Science Conference. University of Sheffield, June 25, 2014

FLEX Mission: Measuring Fluorescence from Space

Luis Alonso, Jose Moreno

LEO Group, LPI, University of Valencia (Spain)

and the FLEX Team

ESA's living planet programme

Explorer 8 mission candidates under study since 2012

CarbonSat

Monitoring CO₂ content of the atmosphere (sources, sinks, hot spots)

• FLEX

FLuorescence EXplorer

Monitoring vegetation fluorescence – the breath of the Earth

FLEX – mission objectives

Primary scientific objectives

- Accurate global mapping of vegetation fluorescence (emission spectrum)
- Estimate the actual global photosynthetic activity via related light absorption and emission
- Vegetation health status / stress identification
- Enhance knowledge on anthropogenic impacts associated to land use changes

Secondary scientific objectives

- Understanding of the terrestrial component of the CO₂ cycle
- Improvement of GPP modelling

What is fluorescence?

Incident solar light can be either reflected, **absorbed** or transmitted by a leaf.

0.14 В 0.12 Radiance (W m⁻² sr⁻¹ nm⁻¹) leaf without filter 0.10 0.08 0.06 0.04 leaf with filter 0.02 0.00 400 500 600 700 800 900 Wavelength (nm)

The absorbed light photons can be used for **photosynthesis** or can be dissipated.

Dissipation can occur as Non-Photochemical Quenching (e.g. heat) or emitted as **fluorescence** (SIF) photons.

Dynamical fluorescence emission

Fluorescence emission spectra from two different species exposed at two levels of air pollution

- Fluorescence is influenced by
 - Environment
 - Plant structure
 - Stress
- Two peaks of the fluorescence emission are highly variable
- Difference in shape between pollution levels, but also between species

Ref: Van Wittenberghe et al. **Upward** and downward solar-induced chlorophyll fluorescence yield indices of four tree species as indicators of traffic pollution in Valencia Environ Pollut, Vol 173, 2013

http://dx.doi.org/10.1016/j.envpol.201 2.10.003.

Measuring a faint signal F_{SIF}

- Atmospheric path radiance
- E_{dir/diff}
 - Diffuse and directly flux reflected by Earth and transmitted through the atmosphere
- $ho_{
 m Surf}$
 - Signal is modulated by the Earth surface reflectance
- T_{atmosphere}
 - Sensitivity to atmospheric changes
- $S_{
 m albedo}$
 - Atmospheric pherical albedo

ESA's FLEX Earth Explorer

Spectral resolution

Finer resolution: lower SNR Coarser resolution: loss of spectral features

FLORIS band configuration

FLEX / S3 tandem concept

- FLEX will fly in tandem with Copernicus' satellite Sentinel 3. Synergy between the
 - different instruments for:
 - Atmospheric characterization and correction
 - Vegetation biophysical parameters
 - o Surface temperature

FLEX

Sentinel-3

Two-Step full-spectrum fluorescence retrieval

Two-Step full-spectrum fluorescence retrieval

ESA's FLEX Earth Explorer

End-to-End Mission Simulator

Spacecraft and payload accommodation

• S/C

- 'Small satellite' recurrent S/C bus
- Wet mass <1000 kg
- Power consumption <500 W

• P/L

- Power consumption ~120W
- Weight ~120 kg
- Data rate ~150 Mbps
- Launcher
 - Vega
- Coverage
 - Global (land + major islands,
 -56 to 75 degree latitude,
 coastal zones 50 km
 - Revisit time up to 19 days

Instrument configurations

FLORIS breadboards: Objectives

- Demonstration of the manufacturability of the flight representative optical elements (lenses, mirrors, coatings, filters, gratings, slits) according to the specifications
- Demonstration of the assembly accuracy of the optical elements according to the accuracies as defined in the tolerance analysis
- Verification of the alignment concept, contamination budget, general accuracies and adequacy of the measurement signals
- Demonstration/measurement of the imaging & spectral performance at focal plane
- Tolerance of the instrument to thermal cycling

FLORIS Concept 1

Fraunhofer

FLORIS Concept 2

Summary

- FLEX will provide global mapping of terrestrial vegetation fluorescence at moderate spatial resolution
- Retrieval and measurement configuration will make use of full information content provided by FLORIS and Sentinel-3
- End-to-End Simulator with detailed implementation of every aspect of the mission, allowing to test performance of each module
- Accuracy of fluorescence measurement expected to be 10% (as demonstrated by campaigns and by simulations)
- FLORIS breadboards in construction and under testing
- Phases A/B1 of FLEX to be completed ~03/2015

Thanks to the FLEX Mission Advisory Group

- Yves Goulas
- Andreas Huth
- Gina Mohammed
- Franco Miglietta
- Jose Moreno
- Ladislav Nedbal
- Wouter Verhoef
- Uwe Rascher
- Betsy Middleton (observer)

Questions? Would you like to know more? www.esa.int

FLEX/PARCS

http://ipl.uv.es/flex-parcs/

http://www.flex-photosyn.ca/

FLEX/PHOTOSYN

System / instrument requirements

Requirement	Specification	Comment
Instrument type	Pushbroom Imaging Spectrometer	
Mission lifetime	3.5 years (T) / 5 years (G)	
Data latency	5 h (T) / 24 h (G)	
		Sun Zenith Angle < 75°
Coverage	-56° < latitude < 75°	Observation Zenith Angle < 15°
		Land area including coastal zones (50km)
Pitch angle	<5°	Preferably Nadir pointing
Swath width	150 km	Enables global coverage
Spatial Sampling Distance	300 m	@ Nadir
Integrated energy	>70% over an area of 1.1 SSD	
Spectral band coverage	500 nm – 780 nm	
Spectral Resolution and Sampling	0.3 nm / 0.1 nm (HR) 2 nm / 0.65 nm (LR)	
Signal to noise ratio	> 200 at 761 nm	
Spectral stability	1nm	Over mission lifetime
	10 pm for FLORIS-HR	During observational time of 1 orbit
	0.1 SSI nm for FLORIS-LR	
Straylight sensitivity	Specified for black & white scene	To maintain radiometric requirement
Spectral co-registration	<0.1 SSD	Smile
Spatial co-registration	<0.1 SSD	Keystone
Knowledge of ISRF	Better than 1%	
Absolute radiometric accuracy	2% (G) 3% (T)	Excluding uncertainty of Sun radiance
Relative accuracy	1%	Spectral and spatial
Polarisation sensitivity	2% (FLORIS-LR)	
	1% (FLORIS-HR)	
Temporal co-registration	6s (G) / 15s (T)	To avoid significant cloud movements
Inter-channel temporal co-registration	<2s	
Geo-location accuracy	0.3 SSD (with ground control points	

Disentangling fluorescence from TOA radiance

- Sensitivity analysis performed to establish spectral ranges and spectral resolutions
- Competing effects
 - Atmospheric state variables
 - Aerosol Optical Thickness (AOT)
 - Aerosol height and model
 - Surface Pressure
 - Water Vapor
 - Vegetation reflectance
- Disentanglement requires
 - High resolution for Oxygen B and Oxygen A
 - Medium resolution red-edge
 - Medium resolution elsewhere

Retrieval evolution

- Promising method for fluorescence retrieval:
 - independent decoupling of reflectance/fluorescence effects and atmospheric/topographic effects
 - Apparent reflectance
 - $r_o' = r_o + F_s / L^{WLR}$
 - true reflectance derived by elimination of the Oxygen absorption (no free fitting parameter anymore)
 - Incoming radiance L^{WLR} from radiative transfer programs
- Other retrieval methods, where reflectance is a free model parameter, are currently under investigation
- Reflectance expected to be a smooth function of wavelength
- Retrieval accuracy expected to be about 10% for both
 - relative accuracy at the two emission peaks
 - total integral of the fluorescence radiance across the whole spectral range (total energy emission)

FLORIS / S-3 band configurations

- FLORIS (**300 m** SSD)
 - Fluorescence
 - PRI
 - Atmospheric correction
 - Apparent reflectance

- S-3 OLCI (300 m SSD)
 - Camera 4 250 km swath
 - O1 to O4 (400 to 490 nm)
 - Aerosols
 - Chlorophyll
 - Reflectance
 - O9 to O16 (510 to 779 nm)
 - Cross calibration
 - Context information

- SLSTR (500m 1 km SSD)
 - VIS S1 to S3 and F1/F2
 - Aerosols
 - SWIR S4 to S6
 - Reflectance
 - TIR S7 to S9
 - Temperature
 - Clouds (water vapour)

Breadboard 1: system test equipment

Radiometric performance

- High signal to noise (SNR) required → large aperture (~80 mm)
- Due to relatively large aperture, the system is photon noise limited
- Other contributors have been minimised

$$SNR_{Sample} = \frac{N_{ph}(\lambda) \cdot b_{ana} \cdot b_{dig}}{\sqrt{(N_{ph}(\lambda) + N_{dark} + N_{smear}) \cdot b_{ana} \cdot b_{dig} + (N_{readout}^2 + N_{quant}^2) \cdot b_{dig}}}$$

• Grating efficiency is essential

Instrument response function

10⁰ Diffraction limited ISRF Scattering ISRF 10⁻² SRF [normalized] 10⁻⁴ 10⁻⁶ 10⁻⁸ 10⁻¹⁰ -6 -4 -2 0 2 6 λ [nm]

- Due to scattering of the optics and optical elements, the IRF is more sophisticated
- Finite response at larger angles

Straylight behavior – test case

Test of straylight sensitivity on black & white scene
 (L_{ref} & L_{TOC})

Radiometric error due to straylight

- Radiometric error ~4% at absorption line
- Without correction

Breadboard 1: telescope test equipment

Slide 29

NCEO/CEOI-ST Joint Science Conference 2014, Seffield

ESA's FLEX Earth Explorer

Breadboard 1: manufacture completed

- BB fully assembled
- Telescope and spectrometer line shapes measured
- Very good performance achieved so far

Breadboard 2: system test equipment

Detector breadboard - CCD

- Same detector for Concepts 1 and 2
- Split frame transfer CCD, 1020 x 440 pixels (TBC)
- Line transfer times of
 ~1.25 μs, frame time of
 45.8 ms
- Pixel size 28 μ m x 42 μ m, full
 well capacity ~2 Me-
- Operating temperature 263 K, dark current of ~0.1 nA/cm²
- Read noise <20e⁻, 2.5 MHz readout rate
- ITT issued, under evaluation, start expected in June

